
Chris Mair - 2022-02-03 - NOI Techpark Developers’ Thursdays

Arm is taking over

 (your server and desktop)

Arm, the company

• Arm is a British semiconductor design company based in Cambridge, England

• 1983: ARM first appeared as Acorn RISC Machine, a CPU by Acorn Computers

• 1990: the company incorporated as Advanced RISC Machines Ltd.

• 1998: IPO as Arm Ltd. (Arm now is apparently not an acronym anymore)

• owned by SoftBank Group (who tried to sell it to Nvidia…)

• market dominance in processor designs for mobile phones and tablets

• 2.0E11 chips based on Arm’s designs [1]

ARM, the architecture

• Arm designs the architecture and licenses it to other companies who use it as a
basis for their (more or less custom) chips - some well known examples:

• all iPhones, iPods and iPads (Apple)

• Switch, 3ds (Nintendo)

• the Exynos SoCs used in various mobile products by Samsung

• Qualcomm’s Snapdragon SoC used in a lot of mobile phones from different brands

• networking devices by Marvell, Broadcom and a lot of others

• the ever popular Raspberry Pi family

(a.k.a. instruction set)

Intermezzo: Nostalgia

https://www.youtube.com/watch?v=MNXypBxNGMo

(the Acorn Archimedes)

https://www.youtube.com/watch?v=MNXypBxNGMo
https://www.youtube.com/watch?v=MNXypBxNGMo

Instruction sets (assembly example)
x86-64 (Intel + AMD)
.L25:
 mov edi, ebx
 call _Z7isPrimei.part.1
 cmp al, 1
 sbb ebp, -1
 add ebx, 2
 cmp ebx, 10000001
 jne .L25
 call _ZNSt6chrono3_V212steady_clock3nowEv@PLT
 pxor xmm0, xmm0
 mov edi, 10
 sub rax, r12
 cvtsi2sdq xmm0, rax
 mulsd xmm0, QWORD PTR .LC4[rip]
 movsd QWORD PTR 8[rsp], xmm0
 call putchar@PLT
 movsd xmm0, QWORD PTR 8[rsp]
 mov edx, ebp
 mov esi, 10000000
 lea rdi, .LC5[rip]
 mov eax, 1
 call printf@PLT
 mov edi, 10
 call putchar@PLT

aarch64 (ARM)
.L24:
 mov w0, w19
 add w19, w19, 2
 bl _Z7isPrimei.part.1
 tst w0, 255
 sub w1, w19, #9998336
 cinc w20, w20, ne
 subs w1, w1, #1665
 bne .L24
 bl _ZNSt6chrono3_V212steady_clock3nowEv
 sub x21, x0, x21
 adrp x0, .LC1
 scvtf d8, x21
 ldr d0, [x0, #:lo12:.LC1]
 mov w0, 10
 fmul d8, d8, d0
 bl putchar
 fmov d0, d8
 mov w2, w20
 mov w1, 38528
 movk w1, 0x98, lsl 16
 adrp x0, .LC0
 add x0, x0, :lo12:.LC0
 bl printf

ARM - the (low-power) world is not enough…

server CPUs are coming
(and this time they compete)

(0/12022 ix magazine cover [2])

ARM - the (low-power) world is not enough…

desktop CPUs are coming
(and this time they impress)

(Anandtech article screenshot taken 3 Feb 2022 [3])

Server example: Graviton 2
• Graviton 2 (by AWS)

• ARM v8.2/Neoverse-N1 - 64 cores at 2.5 GHz

• g.a. since May 2020

• Anandtech tested Graviton 2 in March 2020 against the Intel Xeon Platinum 82xx (2-
nd gen. “Cascade Lake” and the AMD Epyc 7xx1 (1-st gen “Naples”) [4]

• Anandtech found the Graviton 2 can compete against these top offerings by Intel
and AMD in performance and easily beats them in cost/performance

• things are moving quickly, however: Xeon 83xx (“Ice Lake”), Epyc 7xx2 (“Rome”),
Epyc 7xx3 (“Milan”) are available and Graviton 3 is announced

Benchmarks: Graviton 2 vs. “Ice Lake” Xeon
• some tests on:

- m6i.4xlarge (16/128 threads of a Xeon Platinum 3rd gen.“Ice Lake” 8375C

@ 2.90GHz) vs.

- m6g.4xlarge (16/64 threads of a Graviton 2 @ 2.50 GHz)

• fairness notes:

- the “Ice Lake” Xeon is newer (m6g is g.a. May 2020 and m6i is g.a. August 2021)

- for the Graviton 2 each thread is a core, whereas the Xeon has 2 threads per
core

• costs:

- m6i.4xlarge is $0.768 /h vs m6g.4xlarge is $0.616 / h

Benchmarks: Graviton 2 vs. “Ice Lake” Xeon
(run on Debian 11.2 for both, all compilers from default repo, Python 3.9.7 from condaforge)

0 s

2 s

4 s

6 s

8 s

pi (Java) pi (C++) pi (Py) / 10 pi (go) [*]

"Ice Lake" Xeon Graviton 2

naive primes benchmark - compute pi(1e7)

takeaways:

• in this strictly ST benchmark,
the (newer) Xeon wins by a factor ~ 2

• Python’s interpreted nature really
shows (note the scaling /10) :)

[*] An earlier version of this slide had a wrong number for the Xeon.

Benchmarks: Graviton 2 vs. “Ice Lake” Xeon
(run an Debian 11.2 for both, Stockfish 14.1 compiled with g++ 10.2.1, best options for each CPU)

0 Mn/s

0,65 Mn/s

1,3 Mn/s

1,95 Mn/s

2,6 Mn/s

ST classical ST NNUE ST mixed MT mixed [*]/ 10

"Ice Lake" Xeon Graviton 2

Stockfish 14.1 bench

takeaways:

• Graviton 2 is weakest for NNUE
(uses FP), but is closer to keeping up
with classical (bit/byte fiddling)

• in the MT run Graviton 2 is equal,
probably due to the 16 “real” cores
vs. 16 hyper threads

[*] Interestingly, I measured better-than-linear scaling for the mixed benchmark for the Graviton 2:
 bench 16 1 13 default depth mixed -> ~ 1.0 Mn/s
 bench 16 16 13 default depth mixed -> ~ 19 Mn/s
I retested this on a fresh instance and it came out the same.

Benchmarks: Graviton 2 vs. “Ice Lake” Xeon
(run an Debian 11.2 for both, OpenJDK 11 from default repo)

0 s

100 s

200 s

300 s

400 s

functional web

"Ice Lake" Xeon Graviton 2

renaissance.dev Java benchmark 0.13

takeaways:

• Graviton 2 gets 2/3 the performance here
(at 80% of the cost), this benchmark
uses 2 to 4-ish threads, a higher thread
count would likely close the gap…

Benchmarks: Graviton 2 vs. “Ice Lake” Xeon
(run an Debian 11.2 for both, Python 3.9.7 and numpy 1.22.0 from condaforge)

0 GFLOPS

300 GFLOPS

600 GFLOPS

900 GFLOPS

1200 GFLOPS

single (32bit) double (64 bit)

"Ice Lake" Xeon Graviton 2

matrix multiplication 16384 × 16384

takeaways:

• this is a MT benchmark using all cores -
“Ice Lake”s FP-strength (with AVX512)
shows and we get again a factor ~2

Benchmarks: Graviton 2 vs. “Ice Lake” Xeon
overall takeaways:

- Graviton 2 comes close to compete in multi-threaded non-floating-point loads

- don’t forget that the 3rd gen. “Ice Lake” Xeon is 0.5-1 generations ahead,
Graviton 3 is already in closed beta since Nov 2021 [5]

- likely we will see the two families of chips compete generation by generation in
the near future

- sorry for not testing AMD; I expect a similar story there, or even better for
AMD: since Anandtech’s test, mentioned before, Epyc is already two
generations further with Epyc 7xx3 “Milan”

Mobile / small form factor example: Apple M1
• M1: ARM SoC: CPU 4+4 cores, max 3.2 GHz, GPU 8-core, 8 GB RAM

• g.a. since November 2020

• high performance at low power consumption, partly due to TSMC’s 5 nm process

• this CPU beat everything by AMD and Intel in the mobile space at that time

• things are moving quickly, here to: M1-Pro/Max (8+2 cores, g.a. October 2021) and
Intel Core-i9 12-gen “Alder Lake” (8 + 6 cores, g.a. end 2021)

• latest benchmarks confirm laptop class “Alder Lake” Core i9 12xxxH series
outperforms M1 Max at the cost of considerable more power usage (40W M1 Max vs
100W “Alder Lake”) [6]

Benchmarks: M1 vs 8-th gen. Core i7
• low-end Mac mini (“Macmini9,1”), released Nov. 2020,

currently sold at 819 EUR

(M1 CPU 4+4 cores max 3.2 GHz, GPU 8-core, 8 GB RAM, 256 GB disk)

• high-end Mac mini (“Macmini8,1”), released Oct. 2018,

currently sold at 2289 EUR

(i7-8700B 6 cores 3.2 GHz max 4.60 GHz, 32 GB RAM, 512 GB EBS vol.)

• i7 is older (8-th gen), but Intel made the huge jump only with Alder Lake (gen 12), and
this i7-mini is still the highest configuration sold in the mini line

Benchmarks: M1 vs 8-th gen. Core i7
(run an macOS 12.1, Clang 13, OpenJDK 17, Python 3.9.7, go 1.17)

0 s

1,25 s

2,5 s

3,75 s

5 s

pi (Java) pi (C++) pi (Py) / 10 pi (go)

Core i7 M1

naive primes benchmark - compute pi(1e7)

takeaway:

Benchmarks: M1 vs 8-th gen. Core i7
(run an macOS 12.1, Stockfish 14.1 compiled with Clang 13, best options for each CPU)

0 Mn/s

1,25 Mn/s

2,5 Mn/s

3,75 Mn/s

5 Mn/s

ST classical ST NNUE ST mixed MT mixed / 10

Core i7 M1

Stockfish 14.1 bench

takeaways:

• the Core i7 wins for ST NNUE
(uses FP), and the M1 wins for ST
classical (bit/byte fiddling)

• for mixed loads and in the MT run
both chips reach the same performance,
however… the max. package during
the MT run was:
75 W for the Core i7 vs.
17 W for the M1

Benchmarks: M1 vs 8-th gen. Core i7
(run an macOS 12.1, OpenJDK 17 from Homebrew)

0 s

75 s

150 s

225 s

300 s

functional web

Core i7 M1

renaissance.dev Java benchmark 0.13

takeaways:

• the M1 likes Java, apparently

Benchmarks: M1 vs 8-th gen. Core i7
(run an macOS 12.1, Python 3.9.7, numpy 1.19.5 from condaforge)

0 GFLOPS

175 GFLOPS

350 GFLOPS

525 GFLOPS

700 GFLOPS

single (32bit) double (64 bit)

Core i7 M1

matrix multiplication 8192 × 8192

takeaways:

• this is a MT benchmark using all cores -
again Intel shows its FP-strength,
in this case with “only” AVX2

Benchmarks: M1 vs 8-th gen. Core i7
overall takeaways:

- M1 is really strong, especially in non-floating-point loads

- interestingly, on the M1 the naive primes benchmark completes in the same time
for JAVA, C++ or Go, is this a hint at easier compile time optimisation for this
architecture?

- the M1 is really much more power efficient when running under full load like in
Stockfish MT benchmark and even more so when under light load (due to the 4
efficient cores)

- again sorry for missing out on AMD…

Let’s try out stuff live!
The audience suggested: https://github.com/drujensen/fib.
We didn’t get Docker to work, but compiled three versions of fib on three machines.
Here are the results.

0 s

4,5 s

9 s

13,5 s

18 s

fib.c Fib.java fib.go

"Ice Lake" Xeon Graviton 2 M1

Dru Jensen’s fib

takeaways:

• the comparison is a bit tricky, because
we’re comparing high-core-count
server CPUs with a mobile CPU on a
different OS (with newer compilers)

• [1] https://www.arm.com/blogs/blueprint/200bn-arm-chips

• [2] https://www.heise.de/select/ix/2022/1

• [3] https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

• [4] https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd

• [5] https://aws.amazon.com/blogs/aws/join-the-preview-amazon-ec2-c7g-instances-powered-by-new-aws-graviton3-processors/

• [6] https://www.tomshardware.com/news/intel-core-i9-12900hk-outpaces-apple-M1-max-but-theres-a-catch

Sources

https://www.arm.com/blogs/blueprint/200bn-arm-chips
https://www.heise.de/select/ix/2022/1
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://aws.amazon.com/blogs/aws/join-the-preview-amazon-ec2-c7g-instances-powered-by-new-aws-graviton3-processors/
https://www.tomshardware.com/news/intel-core-i9-12900hk-outpaces-apple-M1-max-but-theres-a-catch
https://www.arm.com/blogs/blueprint/200bn-arm-chips
https://www.heise.de/select/ix/2022/1
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://aws.amazon.com/blogs/aws/join-the-preview-amazon-ec2-c7g-instances-powered-by-new-aws-graviton3-processors/
https://www.tomshardware.com/news/intel-core-i9-12900hk-outpaces-apple-M1-max-but-theres-a-catch

