
Some (humble) Experiments in
Time Series Forecasting

Chris Mair

chris@1006.org
https://www.1006.org

ver. 2020-08-20

Chris
after experimenting with
time series forecasting
for a few days

Time series forecasting

Time series methods

Time series methods use historical data as the basis of estimating future outcomes. They are based on the
assumption that past data is a good indicator of future data.

Regression analysis (applied to forecasting)

Regression methods create models that can predict future values of one variable (observation) using
information about other variables (predictors), including past observations.

Others

E.g. simulations, …

Ref:
https://en.wikipedia.org/wiki/Forecasting

Part 1: let’s pick two time series methods

ARIMA

ARIMA = autoregressive integrated moving average

This is a ‘classical’ method. It is mostly used in econometrics.

Ref:
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average and check out the the links to the
sub-models ARMA, AR and MA

LSTM

LSTM = long short-term memory, which is a type of RNN (recurrent neural network)

This is a machine learning (‘deep learning’) method. LSTMs are applied to sequences and typically used for
classification (e.g. speech recognition or automatic classification of ECGs), but can also used for forecasting.

Ref:
http://www.deeplearningbook.org/contents/rnn.html and
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (thx Tiziano :)

Test data: the last 30 days of air temperature in Merano
Can we predict the last 6 days?

Temperature data source: https://analytics.opendatahub.bz.it/tml

Tools

I used MATLAB® for the data handling, regressions, plotting and machine learning and R for ARIMA.

However, LSTMs are available also in the popular frameworks that can be used, such as TensorFlow 2.

ARIMA

arima.m and arima.r

rmse = 2.70

Manually tuned
parameters:
10, 1, 2

(could be improved? ;)

Playing with LSTMs

artificial_datasets.m

non_stationary.m

longer training

😀

😐

☹

Playing with LSTMs

artificial_datasets.m

non_stationary.m

longer training

differentiation does the trick!
(also: more training runs to see the spread…)

😀

☹

LSTM

lstm.m

rmse = 2.88

for 150 hidden layers
and 300 epochs

error bars show spread
from 8 runs

each run takes about
1 min on my notebook

Part 2: let’s try regression analysis

The sample dataset is open data from waste water plants in Trentino.

Source: http://adep.heidix.net/opendata/index.html

get-data.js
to download all the measurements (JSON)

process-data.js
to extract the timestamp ts, the average incoming waste water flow rate q and temperature temp (CSV)

Manual cleanup:
• site PE and PR had duplicated data on 2012-06-19;
• one timestamp was 24:00 instead of the usual 00:00 and MATLAB doesn’t like that;
• sites RM, TM and VT have too few data.

We got data from 67 plants (see adep/*.csv).

Test data: average incoming waste water volume flow rate (q)
Can we predict the last year? Sample site shown is Molveno (adep_plot.m).

Data source: http://adep.heidix.net/opendata/index.html

Interpolation artefacts
from missing data

Regression

Regression methods create models that can predict future values of one variable (observation) using
information about other variables (predictors), including past observations.

Let’s pick the following predictors for q:
• day of year (1 - 365) doy
• flow rate of 1 week ago: q1
• flow rate of 52 weeks ago: q52
• temperature of 1 week ago: temp1
• temperature of 52 weeks ago: temp52

We use regression models to fit a function that gives q as a function of (doy, q1, q52, temp1, temp52).

Using this function we can predict the current q from past data. To iteratively predict future values of q, we
need future values of the temperature too!

So we create a second model for the temperature with predictors:
• day of year (1 - 365) doy
• temperature of 1 week ago: temp1
• temperature of 52 weeks ago: temp52

Linear regression model:
 q ~ 1 + doy + q1 + q52 + temp1 + temp52

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -1.93 1.0933 -1.7653 0.077925
 doy -0.0044464 0.0028848 -1.5413 0.12366
 q1 0.71664 0.024492 29.26 3.0102e-126
 q52 0.06057 0.024177 2.5053 0.012445
 temp1 0.25244 0.13207 1.9114 0.056331
 temp52 0.30138 0.1338 2.2524 0.024583

Number of observations: 758, Error degrees of freedom: 752
Root Mean Squared Error: 7.9
R-squared: 0.705, Adjusted R-Squared: 0.703
F-statistic vs. constant model: 360, p-value = 8.71e-197

Linear regression model:
 temp ~ 1 + doy + temp1 + temp52

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ __________ _______ ___________

 (Intercept) 0.22417 0.13364 1.6774 0.093873
 doy -0.0018937 0.00035168 -5.3847 9.7025e-08
 temp1 0.88316 0.01577 56.004 7.0562e-271
 temp52 0.12581 0.015961 7.8822 1.1263e-14

Number of observations: 758, Error degrees of freedom: 754
Root Mean Squared Error: 0.971
R-squared: 0.949, Adjusted R-Squared: 0.948
F-statistic vs. constant model: 4.63e+03, p-value = 0

Regression: linear model for Molveno (ML)
reg_lm.m

sort of works for q… works well for temp

Linear regression model:
 q ~ 1 + doy + q1 + q52 + temp1 + temp52

Estimated Coefficients:
 Estimate SE tStat pValue
 _________ ________ _______ __________

 (Intercept) 285.55 48.027 5.9457 4.276e-09
 doy 0.040456 0.058401 0.69272 0.48871
 q1 0.6936 0.027944 24.821 5.9838e-99
 q52 0.0091534 0.028932 0.31638 0.75181
 temp1 -3.4879 2.7804 -1.2545 0.21008
 temp52 1.9074 2.5784 0.73978 0.45967

Number of observations: 732, Error degrees of freedom: 726
Root Mean Squared Error: 142
R-squared: 0.5, Adjusted R-Squared: 0.497
F-statistic vs. constant model: 145, p-value = 9.28e-107

Linear regression model:
 temp ~ 1 + doy + temp1 + temp52

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ __________ ________ __________

 (Intercept) 0.010588 0.11325 0.093491 0.92554
 doy -0.0034413 0.00026836 -12.823 4.3673e-34
 temp1 0.97033 0.012015 80.757 0
 temp52 0.064013 0.011129 5.7519 1.2991e-08

Number of observations: 732, Error degrees of freedom: 728
Root Mean Squared Error: 0.669
R-squared: 0.974, Adjusted R-Squared: 0.973
F-statistic vs. constant model: 8.92e+03, p-value = 0

Regression: linear model for Trento Nord (TN)
reg_lm.m

thinks are tricky for other sites (such as Trento Nord) where there is not so much a seasonal component…

Side-project: playing with the linear model for the temperature

Tiziano Lattisi has made a Jupyter Notebook where you can play with the linear model for the temperature.

https://colab.research.google.com/drive/1UZY0EQEWS9BT5biCea5GIo1CJSUq1Zw6?usp=sharing

In particular he notes that instead of using the day of the year (doy) one should use 52 columns in a one-hot
encoding to indicate which week a measurement was made.

He also notes that the strongest predictor is (not surprisingly) temp1 alone.

Regression: linear model for Molveno (ML) - results
reg_lm.m

😀

Regression: linear model for Trento Nord (TN) - results
reg_lm.m

😐

Regression: neural network model
reg_nn.m

We repeat the exact same forecasting algorithm with the model for q and temp, but instead of using a linear
model, we pick a shallow neural network with three blocks having 1, 4 and 1 hidden layers in series.

The training of this network is not reproducible (unless one seeds the random number generator with a
constant), as the network weights are initialised randomly.

One could probably improve training a bit by not picking MATLAB’s default parameters, but I didn’t
investigate this further. I just did the forecast 15 times and averaged the single runs.

As this is a shallow network, a run is a bit less than a second on my notebook.

Regression: neural net model for Molveno (ML) - results
reg_nn.m

😀

Regression: neural model for Trento Nord (TN) - results
reg_nn.m

😐

(C) 2020 Chris Mair

License: Creative Commons Attribution 4.0 International License.

Third party illustrations:

Dunning–Kruger Effect illustration:

https://commons.wikimedia.org/wiki/File:Dunning%E2%80%93Kruger_Effect_01.svg

Network Layer Blocks Illustration:

Screenshot from MATLAB®

Special thanks to Tiziano Lattisi.

